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This paper gives an overview of projection methods based on Krylov subspaces with emphasis on

their application to solving matrix equations that arise in Control problems. The main idea of
Krylov subspace methods is to generate a basis of the Krylov subspace Span{v, Av .... Am'lv},

and seek an approximate solution to the original problem from this subspace. Thus, the original

matrix problem of size N is approximated by one of dimension m typically much smaller than N

Krylov subspace methods have been very successful in solving linear systems (Conjugate

Gradients, GMILES,..) and eigenvalue problems (Lanczos, Amoldi,..) and are now just becoming

popular for solving nonlinear equations. We will show how they can be used to solve partial pole

placement problems, Sylvester's and Lyapunov's equations.
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1 Introduction

Krylov subspace methods have become a very useful and popular tool for solving large sets

of linear and nonlinear equations, and large eigenvalue problems. One of the reason for their

popularity is their simplicity and their generality. These methods have been increasingly

accepted as efficient and reliable alternative to the more expensive methods that are usu-

ally employed for solving dense problems. This trend is likely to accelerate as models are

becoming more complex and give rise to larger and larger matrix problems.

It is interesting to observe that, surprisingly, there has been very little done in developing

algorithms to solve the very large matrix problems that arise in control. Yet, there are now

applications in this area which lead to systems of equations involving very large sparse

matrices. This is the case for-example in models that involve partial differential equations

in several space dimensions, or in applications related to large space structures [4]. Another

typical example is that of electrical networks [5].

In [24] we proposed a method for partial pole placement, which consists of placing a few

of the poles of the matrix, namely only those that are unstable. The methods proposed are

based on projecting the problem onto a small invariant subspace of A associated with the

unstable eigenvalues. Datta and Sand [9] considered several ways of solving special Sylvester

equations and some related problems. Recently, we have considered a few numerical methods

for solving large Lyapunov equations [25].

The purpose of this paper is to describe the general concepts used in Krylov subspace

methods and to give an overview of the different ways in which they are used. As will be

seen the method is fairly universal in that it can be used in various forms to provide solution

methods for virtua_y any linear problem. However, the success of the method depends

critically on the nature of the matrices at hand. For example conjugate gradient type

methods are very successful in solving symmetric positive definite or nonsymmetric positive

real linear systems but have been rather unsuccessful with highly indefinite problems.

The next section is a brief introduction to Krylov subspaces. Section 3 discusses the

application of the method to linear systems, while section 4 is on eigenvalue problems.

Section 5 will be on evaluating exponentials of A times a vector and some applications to

Lyapunov equations.

2 Krylov subspaces

Given a square matrix A and a nonzero vector v, the subspace defined by

K,, - ,pan (v, Av, A*v,...A'_-'v} (I)

is referred to as a the m-th Krylov subspace associated with the pair (A, v) and is denoted

by K,,(A, v) or sirnply by K,_ if there is no ambiguity. We start by stating a few elementary

properties of Krylov subspaces. Recall that the minimal polynomial of a vector v is the

nonzero monic polynomial p of lowest degree such that p(A)v - 0. Clearly, the Krylov

subspace K,, is the subspace of all vectors in _¢¢ which can be written as z - p(A)v, where

p is a polynomial of degree not exceeding m - 1.
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Proposition 2.1 The KryIov subspace K,, is of dimension m if and only if the degree of

the minimal polynomial of v with respect to A is not less than m.

In practice it is uncommon that the degree of the minimal polynomial is less than N,

even in exact arithmetic. If this were to happen then it is usually helpful rather than harmful

because of the following proposition.

Proposition 9..2 Let l_ be the degree of the minimal polynomial of v. Then K u is invariant

under A and K,, = Kt, for all m >_/_.

Thus, in case/_ is small we can work work in subspace of dimension/_ and be able to solve

the problem exactly in this small subspace.

Working directly with the basis {AJv}_=0 ..... ,,-1 is likely to lead to serious numerical

difficulties. Most Krylov subspaee methods utilize either orthogonal or bi-orthogonal bases

of Kin. Thus, the procedure introduced by Arnoldi [1] builds an orthogonal basis of the

Krylov subsl_ce K,_ by the following algorithm.

Arnoldi's algorithm:

1. Start: Choose a vector v, of norm 1.

_. Iterate: for j = 1,2,...,m compute,

hlj -" (Avi, vj) i- 1,2,...,j (2)

J

= Avj- him (3)
i----1

= Ilwll (4)
vj+a = w/h +l (5)

This algorithm is mathematically equivalent to a Grsm-Schmidt process applied to the

power sequence v, Av, .... ,A"_-xv, in that it would deliver the same sequence of vi's in ezact

arithmetic. The algorithm will stop if the vector w computed in (4) vanishes which happens

if the degree of the minimal polynomial for v is j. This is referred to a 'lucky' breakdown since

as was seen above it means that the original problem (linear system, eigenvalue problem)

can be solved exactly in a j-th dimensional subspace.

The following are a few simple but important properties satisfied by the algorithm.

Proposition 2.3 The vectors vl, v2, . .. , v,n form an orthonormal basis of the subspace K,, =

span{v1, Avl, . . . , A'-lvl }.

Proposition 2.4 Denote by V,, the N x m matriz with column vectors vx,... ,v,_ and b_t

H,_ the rn × m Hessenberg matriz whose nonzero entries are defined by the algorithm. Then

the following relations hold:

AV,,_ = V,_H,,_ + h,_+l,mv,,,+le_ (6)

v av. = z. (7)

3



Note that when A is symmetric then (7) impUes that the matrix H,_ is tridiagonal

symmetric and as a result Arnoldi's algorithm simplifies into an algorithm which involves

only three consecutive vectors at each step. The corresponding algorithm is the well-known

Lanczos algorithm.

The second of the relations in the proposition indicates that the Hessenberg matrix H,.

is nothing but the matrix representation of the projection of A onto Kin, with respect to

the orthogonal basis Y,.. Analysis of various projection methods based on Krylov subspaces,

indicate that, loosely speaking, K,. contains the most significant information of A, in that

the outermost eigenvalues of A are well represented by those of its projection onto Kin,

for large enough m. The main idea of Kry]ov subspace methods is to project the original

problem into K,.. In the next sections we will see how this is clone via simple Galerkin type

procedures, for standard linear algebra problems.

The relation (6) has been exploited in [9] for solving special Sylvester's equations that

arise in the design of reduced-dimensional state estimator. The Arnoldi and block-Arnoldi

algorithms have been used in [6] to compute numerically the controllability of a linear system.

3 Krylov subspace methods for solving linear systems

Given an initial guess z0 to the linear system

a= =b, (8)

a general projection method seeks an approximate solution z,, from an affine subspace z0+K,,

of dimension m by imposing the Petrov-Galerkin condition

b- Az,.1L,. (9)

where L,_ is another subspace of dimension m. A Krylov subspace method is a method for

which the subspace K,. is the Krylov subspace

K,,,(A,ro) = .pan{ro,Aro, A=ro,...,A'-Iro}, (10)

in which r0 = b- Azs. The different versions of Krylov subspace methods arise from different

choices of the subspaces K,. and L,. and from the ways in which the system is preconditioned.

The most common choices of K., and Lm are the following.

1. L,,, - K,,, = K,,,(A, ro). The conjugate gradient method is a particular instance of

this method when the matrix is symmetric positive definite. Another method in this class is

the Full Orthogonalization Method (FOM) [21] which is closely related to Arnoldi's method

for solving eigenvalue problems [1]. Also in this class is ORTHORES [14], a method that is

mathematically equivalent to FOM. Axelsson [2] also derived a similar algorithm for general

nonsymmetric matrices.

As an example we outline here the FOM method for solving linear systems. Assume that

we take v_ = ro/llroll2 and run m steps of Arnoldi's method described in the previous section.

Then, the approximate solution is of the form Zo + V,,,ym where 7/,,, is some m-vector. The

Galerkin condition (9) with L,,, = K,_ gives immediately that y,_ = H,_ll[r0H2el.

4



i

2. L,_ = AK,_;K,, = K,_(A, ro). With this choice of L,,, it can be shown, see e.g., [26]

that the approximate solution z,,, minimizes the residual norm lib - AzH2 over an candidate

vectors in zo + K,,. In contrast, there is no similar optimality property known for methods

of the first class when A in nonsymmetric. Because of this, many methods of this type have

been derived for the nonsymmetric case [3, 14, 11, 27]. The Conjugate Residual method [7]

is the analogue of conjugate gradient method that is in this class. The GMRES algorithm

[27] is an extension of the Conjugate Residual method to nonsymmetric problems.

3. L,_ = K,_(AT,ro);K,_ = K,,,(A, ro). Clearly, in the symmetric case this class of

methods reduces to the first one. In the nonsymmetric case, the biconjugate gradient method

(BCG) due to Lanczos [15] and Fletcher [12] is a good representative of this class. There

are various mathematically equivalent formulations of the biconjugate gradient method [22],

some of which are more numerically viable than others. An effldent variation on this method,

called COS (Conjugate gradient squared) was proposed by Sonneveld [28].

Apart from the above three basic methods there are a number of techniques for non-

symmetric pr0blems that are mathematically equivalent to solving the normal equations

ATAz - Arb or AATy --- b by the conjugate gradient method. We will comment that these

methods are often too quickly dismissed as inferior because of the fact that the condition

number of the original problem is squared. For problems that are strongly indefinite they

do represent, however, the only viable alternative, since none of the above three types of
methods would work in this situation.

One of the possible applications of the methods described here is in the frequency response

calculations in input-output analysis. For example, in the single input single output case, one

needs to compute c(A-j_I)-lb for many values of co. We observe that the Krylov subspaces

are invariant under arbitrary shifts to the matrix A, i.e., K,,,(A, v) = K,,(A - sI, v) for any

,s. This suggests using the same Krylov subspace K,,,(A, v) to get approximations to all of

the solution vectors (A - j_,,I)-lb via the formula

• = - (11)

where we have set 13 = Hb][ and where we assume that the Arnoldi algorithm is started with

_1 = _/llbll2, i.e., z0 = 0. This technique was suggested in [10] and can be regarded as an

extension of the earlier technique proposed by Laub in [16] for dense problems. Numerical

experiments are currently being performed.

An important factor in the success of conjugate gradlent-like methods is the precondi-

tioning technique. This typically consists of replacing the original linear system (8) by, for

example, the equivalent system

M-1Az = M-Xb (12)

In the classical case of the incomplete LU preconditionings, the matrix M is of the form

M = LU where L is a lower triangular matrix and U is an upper triangular matrix such that

L and U have the same structure as the lower and upper triangular parts of A respectively. In

the general sparse case, the incomplete factorization is obtained by performing the standard

LU factorization of A and dropping all fill-in elements that are generated during the process.

This is referred to as ILU(O), or IC(O) in the symmetric case.



4 Krylov subspace methods for eigenvalue problems

An idea that is basic to sparse eigenvalue calculations is that of projection processes [23].

Given a subspace K spanned by a system of nt orthonormal vectors V - _vl,...,v,,] a

projection process onto K - span {V) computes an approximate eigenpair ._ E _,_ E K

that satisfy the Galerkin condition,

(A- _I)_ _l_K (13)

The approximate eigenvalues _ are the elgenvalues of the m x m matrix C = V_AV.

The corresponding approximate eigenvectors are the vectors fit = Vy_ where yl are the

eigenvectors of C. Similarly, the approximate Schur vectors are the vector columns of

VU, where U = [ux, u,,...,u,_] are the Schur vectors of C, i.e., UTCU is quasi-upper

triangular. Thus, one possible method for computing eigenvalues/ eigenvectors of large

sparse matrices is to use the Arnoldi process [1, 20] which is a projection process onto

K,, = span{v1, Avl,..., A'-xvx }. Once the Arnoldi vectors Vl, .... , v,, have been generated

we can use V,,, for a projection process onto K,_. The matrix V_AV,_ which is needed for

this purpose is nothing but the upper Hessenberg matrix firm generated by the algorithm.

Note that the Arnoldi algorithm utilizes the matrix A only to compute successive matrix

by vector products w = Av, so sparsity can be exploited. As m increases, the eigenvalues

of Hm that are located in the outermost part of the spectrum start converging towards

corresponding eigenvalues of A. However, the difficulty with the above algorithm is that as

m increases cost and storage increase rapidly. One solution is to use the method iteratively:
m is fixed and the initial vector vx is taken at each new iteration as a linear combination

of some of the approximate eigenvectors. Moreover, there are several ways of accelerating

convergence by preprocessing vx by a Chebyshev iteration before restarting, i.e., by taking

vl = tk(A)z where z is again a linear combination of eigenvectors.

A technique related to Arnoldi's method is the nonsymmetric Lanczos algorithm [18, 8]

which produces a nonsymmetric tridiagonal matrix instead of a Hessenberg matrix. Unlike

Arnoldi's process, this method requires multiplications by both A and A r at every step. On

the other hand it has the big advantage of requiring little storage (5 vectors). Although no

comparisons of the performances of the Lanczos and the Arnoldi type algorithms have been

made, the Lanczos methods are usually recommended whenever the number of eigenvalues
to be computed is large.

Finally, if the matrix is banded an e61cient solution is the shift and invert strategy which

consists of using one of the above iterative methods (subspace iteration, Arnoldi, or Lanczos)

for the matrix (A-¢I) -1, where _r is some shift chosen say at the center of some small region

of the complex plane where eigenvalues are sought. The matrix (A - crI)-I need not be

explicitly computed: all we need is to factor (A - _rI) into LU and subsequently at each

step of the iterative method solve two triangular systems one with L and the other with U.
T_us band-struc{ure can-be f_dlyexpl0_ed.-In [i9] Severed-imp]ementationsof the s_ft and

invert strategy are considered and the problem of avoiding complex arithmetic when A is
real is addressed.
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An important application of the eigenvaluealgorithms is to provide a small invariant

subspace that will represent the critical modes of the system. For example unstable modes,

assuming that there are just a few of them, can then be displaced by a technique described

in [24]. The m_;n idea in [24] is now summari-_ed.

Let A be an N x N real nonsymmetric matrix whose eigenvalues are

and b be a given real vector.
modified matrix

has the given eigenvalues

The problem considered is to find a vector / so that the

M = A - bf T

P;, P=, • • •, Pk, _k+; , . • •, ,_.

In other words we would like to assign the eigenvalues )q, _2,..., _k of A into pl,p2,... ,pk,

while leaving the rest of the spectrum of A unchanged, with the rank one perturbation -bf T.

This is referred to as the partial pole assignment problem.

To solve this problem we assume that we have computed the partial Schur factorization
for AT:

ATQ = QR,

where Q is an N x k matrix whose columns form an orthonormal basis of the left invariant

subspace associated with hi, i - 1,... k and R is a k x k upper quasi-triangular matrix. We

then seek a solution f in the form f = Qg. Denoting by s the vector 8 = QTb, the matrix
M_Q is such that,

The above equation means that the choice f = Qg makes the subspace spanned by Q

also invariant under M s. Moreover, the eigenvalues of the matrix M associated with this

invariant subspace are the eigenvalues of the k x k matrix Ci, = R r - 8g _. Thus it suffices to

assign the eigenvalues of this small matrix to be pi, i = 1,... k, by an appropriate choice of

the vector g. It was shown in [24] that this solves the problem and that the solution is feasible

under some mild conditions on b and the pi's. Nichols [17] proposed improvements on this

scheme to provide robust partial pole placement techniques. In [9] alternative techniques for

partial pole placement were derived from a special technique to solve Sylvester's equation.

5 Approximations to ear and applications

Computing approximations to the exponential of a matrix is usually not too hard a problem

for small dense matrices. For large matrices, this can be rather difficult to do because of

the fact that eA will in general be a dense matrix even when A is very sparse. However, it

is often not the exponential of the matrix that is sought but its product with some vector

v. The question of approximating ear for any given vector v was considered in [13] where



polynomial and rational approximations to the exponential were used. Here we summarize

only the method proposed in [13] that is based on polynomial approximation to ear:

eAv._ pm_,(A)v (14)

where p,_-: is a polynomial of degree m - 1. Thus, the above approximation is an element

of the Krylov subspace (1) and it is convenient to express it in the orthonormal basis V,,, =

[va,va, v3,... ,v,n] generated by Arnoldi's algorithm seen earlier. We can write the desired

approximation to z = ear as zm = p,_(A)v or equivalently z,_ = V,_y where y is an m-vector.

In [13], the choice y = fleS"ex with/_ = Ilvl12was suggested, leading to the following formula

for arbitrary t,

(15)

The quality of this approximation was also analyzed in [13] and the following result was
shown.

Theorem 5.1 Let A be any square matriz and let p = IIAllffi.Thenthe e or of the approz-

imation (15) is such that

IteAv-  v,,,e'r-elll _< (16)

Experiments reported in [13], reveal that this approximation can be very accurate even for

moderate values of the degree m. The theorem shows convergence of the approximation (15)

for fixed t, as m increases to oo. However, note that the above approximation is exact when

m = N, see [13].

One application of the above formulas is that one can approximate etAv for all t as

e' tv BV,,,e' r"el. (17)

This provides a way of solving ordinary differential equations of the type _ = Az + b which

was the original problem considered in [13]. Moderate degrees can provide reasonably high

accuracy in the solutions. Another direct application is described in [25], where the control-

lability Grammian,

ffi --/o**e_Abbr e'Ar dr" (18)X

was approximated by replacing the function e'_tb by its approximation (17). Note that X is

known to be the solution of the Lyapunov equation

AX + XA r + bb r = O. (19)

A rather unexpected result shown in [25] is that the approximation provided by the above

integration process is nothing but a Galerkin method applied to (19) over the subspace of

matrices of the form VmGV_, where V,_ is fixed and G runs over the set of m × m matrices.



6 Conclusion

The techniques described in the previous section, and other recent developments elsewhere,

suggest that in many of the problems in control, one can work in a Krylov subspace of

reasonably small dimension. For example, although the theory is not established for this

case, the above approach for Lyapunov equations can be extended to Riccati's equation using

a Galerldn point of view. Many of the optimization techniques in control can be carried out

by replacing the full n-dimensional variable z(t) by an approximation derived from replacing

z by its m dimensional approximation (17). This may open up interesting new approaches

and theoretical questions as to the accuracy of the corresponding approximations.
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